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ABSTRACT 
Models that predict software artifact co-changes have been proposed to assist developers in altering a software system, and 
they often relying on coupling. However, developers have not yet widely adopted these approaches, presumably because of the 
high number of false recommendations. In this work, we conjecture that the contextual information related to software changes, 
which is collected from issues (e.g., issue type, reporter, etc.), developers' communication (e.g., number of issue comments, 
issue discussants, words in the discussion, etc.), and commit metadata (e.g., number of lines added, removed, and modified), 
improves the accuracy of co-change prediction. We built customized prediction models for each co-change and evaluated the 
approach on 129 releases from a curated set of 10 Apache Software Foundation projects. Comparing our approach with the 
widely-used association rules as a baseline, we found that contextual information models and association rules provide a similar 
number of co-change recommendations, but our models achieved a significantly higher F-measure. In particular, we found that 
contextual information significantly reduces the number of false recommendations compared to the baseline model. We con-
clude that contextual information is an important source for supporting change prediction and may be used to warn developers 
when they are about to miss relevant artifacts while performing a software change. 
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1 INTRODUCTION 
Changes are part of software development. Developers modify artifacts to fix defects, add new features, or improve existing 

source code. In order to make the necessary changes to fulfill a task (e.g., a change request), developers often execute manual 
and time-consuming tasks. Co-change prediction approaches have been proposed to support developers while they perform 
software changes (Bohner and Arnold 1996; Zimmermann et al. 2005; Hassan and Holt 2004). These approaches are based on 
the premise that if there is coupling between two files in a release, these files are prone to co-change in the consecutive release. 

Predicting co-changes can be useful to avoid incomplete changes by notifying developers about artifacts that are likely to 
change together (Hassan and Holt 2004), and to help newcomers complete their first contribution, especially when newcomers 
have little knowledge about the source code and the software architecture (Steinmacher et al. 2016).  

Approaches that have been proposed to predict co-changes often rely on source code analysis, such as dynamic analysis 
(Orso et al. 2004), static analysis (Briand et al. 1999), frequent past changes and change coupling analysis (Gall et al. 1998; 
Ying et al. 2004; Zimmermann et al. 2005), and conceptual analysis (Gethers and Poshyvanyk 2010; Revelle et al. 2011). Other 
approaches combine these techniques into hybrid methods (Hassan and Holt 2004; Gethers et al. 2012; Kagdi et al. 2013; Dit 
et al. 2014). However, despite the advances in this area, the number of false recommendations is still high, presumably because 
the couplings do not adequately capture the situations in which the artifacts change together (Canfora et al. 2014; Oliva and 
Gerosa 2015a). Contextual information may help to characterize the change context, improving the performance of the predic-
tion models. 

Developers change software artifacts for various reasons and the context involved in the changes may indicate the conditions 
in which two artifacts are prone to co-change. To investigate this hypothesis, we built prediction models at the file level for 
each pair of artifacts, using contextual information from one release to predict if in issues of the consecutive release the two 
artifacts would change together. Our investigation sheds light on the possibility of using information about the context in which 
the software change occurred to reduce the number of false recommendations and to improve the effectiveness of co-change 
prediction. Contextual information is not considered by current approaches, yet it can be beneficial since software artifacts are 
changed for different reasons (Oliva et al. 2013; Canfora et al. 2014; Oliva and Gerosa 2015b).  

In previous work (Wiese et al. 2015, 2016), we conducted an exploratory study with two projects by using random forest 
classifiers trained with contextual information from past changes to improve the co-change prediction. We relied on the concept 
of change coupling to select the pairs of files most likely to co-change and to compare our prediction model to an association 
rule model (Oliva and Gerosa 2015b). In this paper, we build upon our previous work to investigate the extent to which con-
textual information correctly predicts co-changes in a larger sample of projects and without limiting the analysis to the top 25 
co-changes. We analyze whether our approach leads to predictions that are more accurate compared to a baseline model based 
on association rules (using different support and confidence thresholds). In addition, we contacted developers from the studied 
projects and asked them to inspect the results and discuss their perspective about adopting the proposed approach in practice. 

We analyzed 10 open source projects and 129 releases. Overall, we found that contextual information extracted from issues, 
developers’ communication, and commit metadata enables a highly accurate prediction of co-changes, correctly predicting 
19,746 out of 26,189 co-changes (75%). Association rules covered 33% of all possible co-changes, while contextual 
information models covered 25%. However, association rules issued more wrong recommendations than contextual 
information models (111k vs 16k). We also found that contextual information models based on numeric metrics can predict 
many more co-change instances and can be used to evaluate more instances (137k vs 19k), but that categorical information can 
improve the accuracy of the prediction models by an average of 12% of recall and 23% of precision. These results suggest that 
our model can be leveraged for the development of novel co-change prediction tools to support software evolution and mainte-
nance. 
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2 STUDY DESIGN 
In this section, we present our research questions and their rationale (Section 2.1), followed by an overview of our approach, 
including the data collection steps, the way we selected and tagged each co-change to build the prediction models, and the 
evaluation method (Section 2.2). Finally, we list and describe the studied systems (Section 2.3). 

2.1 Research Questions 
Previous work has shown that prediction models can be built to predict co-change occurrences (Zimmermann et al. 2005). 

We conjecture that it is possible to improve these models by using contextual information collected from issues, developers’ 
communication, and commit metadata. We aim to investigate how many co-change instances can be correctly predicted by 
contextual information models compared to a baseline model built with association rules, which is widely used in the literature 
(Ball et al. 1997; Ying et al. 2004; Zimmermann et al. 2005; Gethers et al. 2012; Kagdi et al. 2013). Hence, we formulate our 
first research question as follows: 

 

(RQ1) How does co-change prediction based on contextual information models compare to association rules in terms of 
accuracy and coverage?  

 
To determine the accuracy of the prediction models, we check whether they only suggest co-changes that indeed occurred 

in a specific commit (precision) and whether all co-changes that occurred in a commit are suggested (recall). More specifically, 
we compare the F-measure (harmonic mean between precision and recall) achieved by the two models under different experi-
mental settings. We also compare the models in terms of their coverage, which we calculate as the ratio of co-changes that we 
can correctly predict using each approach compared to the number of co-changes that occurred in each release. 

Knowing how well a given model performs is not the only criterion governing its adoption. From a practical perspective, it 
is important to reason about the cost of collecting the data required to build the model. This aspect is particularly important in 
the domain of this study, since pieces of contextual information might come from various sources (e.g., version control and 
issue tracking systems) or might involve intensive computation to be obtained (e.g., building a communication network from 
development discussion threads). Therefore, discovering which key features (metrics) enable building models with significantly 
less effort is important in practice. Determining key features may also serve as input to drive new theories about the reasons 
behind change coupling. This reflection leads to our second research question: 

 (RQ2) What are the most influential kinds of contextual information when predicting co-changes? 

2.2 Approach overview 
Figure 1 shows an overview of our approach. The approach is split into two main parts: (i) compute association rules from a 
release to predict co-changes in the consecutive release, and (ii) extract contextual information metrics and build a classifier 
for each antecedent file found by association rules to predict co-changes in the consecutive release. Our dataset and scripts are 
available on Zenodo1. 

 

                                                        
1	 Dataset and scripts are available at https://zenodo.org/record/2635857 



 

 
Figure 1. Approach Overview 

As an illustrative example, let us assume that we want to predict co-changes between two files, namely JMSConduit.java 
(File A) and JMSOldConfigHolder.java (File B) from the Apache CXF project. Calculating the frequency of changes during 
release 2.0, we find that File A changed 33 times, including 15 times when it changed together (co-changed) with File B. Based 
on this historical information, it seems reasonable to infer that both files are prone to change together in the consecutive release 
(2.1). Indeed, the frequency of past changes would correctly predict co-changes in 19 commits. However, in other 26 commits, 
File A changed, but without a corresponding change in File B. In this case, the frequency-of-past-changes approach would 
yield 26 false recommendations. 

In our approach, we collect contextual information for each commit that includes File A in the release 2.0 and build a 
prediction model for the pair File A and B, because they frequently changed together in the past. This model indicates, for 
release 2.1, 17 co-changes between both files, and 19 cases in which File A changed without File B. Considering this example, 
our approach wrongly predicts 7 co-changes between both files (false positives) and 2 cases in which File A changed without 
File B (false negatives), but it correctly predicts 36 commits. Comparing our approach to the association rules approach in this 
example, contextual information reduced the number of false recommendations by 65%. For this example, the most influential 
contextual information used by our model was the number of lines changed, the number of words used to describe an issue, 
and who reported the issue.  

In the following, we describe each step in more detail. 
Step 1) Collecting Issues and Commits 
We used two data sources: Version Control Systems (VCS) and Issue Tracking Systems (ITS). Issues (e.g., change requests 
and bug reports) are often logged in an Issue Tracking System (ITS), such as Bugzilla or JIRA, and have a unique identifier 
(ID). This ID helps identify the commits in the version control system associated with an issue. We	extracted	data	from	the	
issues	and	commits	of	the	studied	software	projects.	We	used	Bicho2	to	parse	and	collect	all	issues	from	JIRA	ITS.	To	collect	data	from	
VCS	archives,	we	used	the	CVSAnalY3	tool. 

Since an issue might be resolved after several commits, to avoid missing cases of co-changes related to an issue we grouped 
commits that addressed the same issue. To link issues and commits, we searched the commit messages for the expression 
“project name” + “issue_number” (e.g. Hadoop-1000), since this pattern is often used by Apache projects. We also checked if 
the commits were made while the issue was holding the status open and if the status changed to “fixed” afterward. 

Step 2) Applying the association rules algorithm 
An association rule is an implication of the form I ⇒ J, where I and J are two disjoint sets of items (a.k.a., item sets). A 

relevant rule I ⇒ J means that when I occurs, J is likely to co-occur. In this study, a rule I ⇒ J means that J is change-coupled 
to I. We also consider that I and J are file sets composed by one single file, where I = {fi} and J = {fj} and fi ≠ fj. The relevance 
of association rules can be measured according to several metrics. In this study, we employ the metrics of support and confi-
dence, which have been extensively used in previous Software Engineering research studies (Zimmermann et al. 2005; Moonen 
et al. 2016; Rolfsnes et al. 2016). 

                                                        
2	https://github.com/MetricsGrimoire/Bicho 
3	https://github.com/MetricsGrimoire/CVSAnalY	
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For each release, we calculated all possible rules involving pairs of files. Since we wanted to compare our results to the 
association rules approach, we filtered the co-changes by values of support and confidence. We collected co-changes with 
support 2, 3, 4, 5, 6, 7, 8, and higher than 8. For each support value, we applied confidence thresholds ranging from 50-70%, 
71-90%, and 91-100%. We used these thresholds based on previous work and after analyzing the distribution of support and 
confidence values identified in each project. We also filtered out co-changes with support of less than two, because a unitary 
weight does not reflect how often two classes usually change together (Beyer and Noack 2005). 

Step 3) Calculating Contextual Information Metrics 
To build the prediction models, we used metrics calculated from contextual information of issue reports, developers’ com-

munication, and commit metadata, as described in the following. 
Issue Context: We hypothesize that some co-changes are more likely to happen when fixing a bug, while others appear when 
implementing new features. The assignee works on issues related to specific parts of the software, and an issue reported by the 
same reporter might involve the same files, since the reporter might be interested in some specific requirements. The metrics 
defined for this dimension are: was the issue reopened? (categorical), issue type (categorical), issue assignee (categorical), and 
issue reporter (categorical). 
Communication Context: Discussion characteristics can indicate how proneness files co-change. For example, some co-
changes can happen in issues with more messages or more words (wordiness), either because the issue is difficult to understand, 
or because the files necessary to fix this issue are complex. The metrics defined for the communication context are: number of 
issue comments, number of issue discussants, number of words in the discussion, and number of distinct developers. 
Developer's Role in Communication: Developers involved in a discussion have different values of Betweenness and Close-
ness. Previous work has shown the importance of these metrics in other software engineering problems (Bird et al., 2009). We 
calculated the closeness and betweenness centrality for this dimension based on Wassermann and Faust (1994).  
Structural Hole of Communication: Structural hole metrics denote gaps between nodes in a social network and represent that 
people on either side of the hole have access to different flows of information, indicating that there is a diversity of information 
flow in the network. In previous work, we successfully used structural holes to identify recurrent change couplings (Wiese et 
al. 2014b). In this sense, these metrics represent a way to analyze the communication network revolving around software co-
changes. The metrics are: constraint, hierarchy, effective size, and efficiency. We calculated these metrics based on Wasser-
mann and Faust (1994). 
Communication Network Properties: Network properties indicate aspects of how the social network is organized. Networks 
with more arcs indicate more message exchange intensity. Networks with more nodes indicate greater involvement of devel-
opers. The social network property is useful for predicting defects (Bird et al., 2009; Conway, 1968). The metrics are: size, 
ties, diameter, and density. We calculated these metrics based on Wassermann and Faust (1994).  
Commit Context: Code churn or a specific operation (add or delete) on lines of codes can indicate specific aspects for different 
co-changes. The metrics are: committer (categorical), # of lines of code added, # of lines of code deleted, code churn, and is 
the committer the file owner? (categorical). 

Step 4) Building Classifiers 
Training/Test Set separation. For the validation of our prediction models, we went through all releases of each project, build-
ing the training set in one release and using the changes occurred in the consecutive release as a test set. Table 1 presents an 
example of the training set to predict co-changes between JMSConduit.java and JMSOldConfigHolder.java. 

Table 1. An example of a training set built with metrics collected from JMSConduit.Java changes to predict when the 
co-change with JMSOldConfigHolder.java is likely to occur 

Pair of files  # 
Commit  

# 
Issue  

Set of metrics from contextual information (issues, developers’ 
communication, and commit)  Co-Change  

JMSConduit.java – 
JMSOldConfigHolder.java 1 1760 

Issue Type = Bug, Issue Reopened = 0, Assignee = ffang,  
Reporter = ffang, # of commenters = 3, # of dev commenters = 2, wordiness 

= 438… 
0 

JMSConduit.java – 
JMSOldConfigHolder.java 50 1832 

Issue Type = Improvement, Issue Reopened = 0, Assignee = chris@die-
schneider.net,  

Reporter = chris@die-schneider.net, # of commenters = 3, # of dev 
commenters = 2, wordiness = 764… 

1 



 

JMSConduit.java – 
JMSOldConfigHolder.java 72 2207 

Issue Type = Bug, Issue Reopened = 0, Assignee = njiang,  
Reporter = liucong, # of commenters = 2, # of dev commenters = 1, 

wordiness = 311… 
0 

JMSConduit.java – 
JMSOldConfigHolder.java 220 2316 

Issue Type = Improvement, Issue Reopened = 0, Assignee = dkulp,  
Reporter = marat, # of commenters = 1, # of dev commenters = 0, wordiness 

= 43… 
1 

JMSConduit.java – 
JMSOldConfigHolder.java … … … ... 

The column "Pair of files" indicates the co-change analyzed. In this example, File A (JMSConduit.java) is the antecedent 
and File B (JMSOldConfigHolder.java) is the descendent identified by the relevant association rule. All metrics are computed 
for File A. In this sense, the set of metrics was extracted from each commit and issue (indicated in the corresponding columns) 
in which file A (JMSConduit.java) was changed.  
Tagging co-changes. To tag each co-change, we looked at the descendent. Each commit containing File A (antecedent) was 
checked, and when the commit propagated changes to File B (descendent), we assigned the commit to class “1.” Otherwise, 
we assigned it to class “0” to indicate that only File A was changed in the commit. Therefore, the value 1 indicates that the 
antecedent (File A) and the descendent (File B) were committed together. The first 4 lines indicate that file A had 4 commits 
in 4 distinct issues, but only commits 50 and 220 (2 and 4 line in Table 1) propagated changes to File B (Class column = 1). 
Classifier Construction. For each release of each project analyzed, we generated a .csv file to use as a training or test set. The 
release version N is used as a training set and the release version N+1 is used as a test set. We ran the random forest technique 
to construct classifiers to predict the co-changes.  

Random forest is frequently used in classification problems since the models can be used with large and small datasets, and 
it also can handle problems of missing data (Breiman 2001). Random forest has been used in several previous software engi-
neering studies and tends to have good predictive power (Lessmann et al. 2008; McIntosh et al. 2014; Dias et al. 2015; Macho 
et al. 2016). The random forest technique builds a large number of decision trees at training time using a random subset of all 
the attributes. Using an aggregation of votes from all trees, the random forest technique decides whether the final score is higher 
than 0.5 to determine if a co-change will be predicted as true. We implemented our classifiers using the R package Caret (Kuhn 
2008). 

Step 5) Evaluating the co-change prediction performance 
To evaluate our classifier, we used training and test sets generated for each release of each project under study. For each 

release, we found the relevant association rules, considering a broad range of support and confidence values.  
Taking Table 1 as an example, we have an association rule JMSConduit ⇒ JMSOldConfigHolder, meaning that “when 

JMSConduit is changed, JMSOldConfigHolder is likely to change.” This implies a change coupling from the right-hand side 
(RHS) to the left-hand side (LHS), i.e., changes in LHS often imply changes to the RHS. Thus, in the consecutive release (test 
set), we evaluate the commits in which LHS changes, because we want to know what its impact on RHS is (co-change vs no 
co-change).  

The performance of the classifier was measured in terms of recall, precision, F-measure and Mathews Correlation Coeffi-
cient (MCC). Below, we describe each one of them:  
 Recall: We calculated recall to identify the proportion of instances that the model nominated for changing together and 
those actually changed. To obtain the recall value, we used the following formula: TP/TP+FN. 

Precision: We measured precision to identify the rate of predicted co-changes that have actually changed together. To obtain 
the precision value, we used the following formula: TP/TP+FP. 

F-measure is the harmonic mean of precision and recall. We used the following formula: 2*(precision*recall)/(precision + 
recall). 

Mathews Correlation Coefficient (MCC) is a correlation coefficient between the observed and predicted classification. 
This measure takes into account TP, FP, TN, and FN values and is generally regarded as a balanced measure, which can be 
used even if the classes are unbalanced. Because we found many imbalances in our data, we do not report the Area under the 
Curve, which can be a biased measure (Powers, 2011). For binary classification tasks, MCC has attracted the attention of the 
machine learning community as a method to summarize the confusion matrix into a single value (Powers, 2011). An MCC 
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coefficient of +1 represents a perfect prediction and 0 means a random prediction between prediction and observations. We 
calculated MCC using the following expression (Powers, 2011): 

MCC	 = 	
(𝑇𝑃 ∗ 	𝑇𝑁) − (𝐹𝑃 ∗ 𝐹𝑁)

.(𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁)
 

Finally, to study the most influential contextual information, we computed Breiman’s variable importance score (Breiman 
2001) for each numeric contextual information: the larger the score, the greater the importance of the contextual information. 
We used the variable importance function (varImp) of the Caret R package to obtain normalized Z-scores (scale = TRUE); 
thus, the values returned by each prediction range from 0 to 100. 

2.3 Studied software projects 
We studied 10 Apache Software Foundation projects. We selected projects from different domains and with different numbers 
of lines of code (LOC), numbers of active developers (#Devs), and activity levels according to OpenHub4 data. All projects 
have more than 300k of LOC, at least 36 developers contributing actively, and generally very high activity levels. All projects 
were implemented in Java and had XML files. 

Table 2 summarizes the data collected from each project. Cloudstack and Solr are newer projects, thus, both projects have 
fewer data. In total, we used data from around 24k issues and 54k commits linked to issues, and we analyzed 7k distinct 
association rules over 129 releases. The collected commits represent 26% of the total number of commits found in the version 
control system of the subject systems. 

Table 2. Studied Projects 
Projects Releases Issues  Commits Linked to issues  Association rules 

Camel 22 3494 7765 (30.54%) 479 
Cassandra 14 1597 2405 (14.18%) 519 

Cloudstack 4 556 1382 (3.36%) 47 
CXF 9 3139 8308 (40.95%) 1464 

Derby 11 2605 7469 (69.80%) 1547 
Hadoop 22 2453 4306 (12.33%) 363 

Hbase 14 5494 13372 (64.59%) 1954 
Hive 12 2014 2393 (32.81%) 310 

Lucene 17 2032 6433 (24.07%) 294 
Solr 4 418 555 (15.99%) 54 

Total 129 23802 54388 7031 

3 RESULTS 

3.1 (RQ1) How do co-change predictions based on contextual information models compare to association rules in 
terms of accuracy and coverage? 

We built a classifier for each co-change following the approach described in Section II. It is important to mention that we built 
two different types of classifiers using contextual information: (i) ACI models, which used all contextual information metrics 
calculated in each release; and (ii) NCI models, which only considered numeric contextual information metrics. The reason to 
test both models is related to applicability; ACI models can be less useful, since a value for categorical information can be 
present in the test set, but not in the training set.  

To answer RQ1, we calculated how many co-changes we could correctly predict compared to the number of correct predic-
tions made with association rules with support ≥ 2 and confidence value ≥ 50%. We used these thresholds based on the literature 
that used association rules to infer change couplings (Zimmermann et al. 2005; Bavota et al. 2013). It is important to mention 
that the association rule model is widely used in the literature and can be considered a baseline model (Ball et al. 1997; Ying 
et al. 2004; Zimmermann et al. 2005; Gethers et al. 2012; Kagdi et al. 2013; Dit et al. 2014).  

                                                        
4	OpenHub	can	be	accessed	at	https://www.openhub.net	



 

In Table , we report the confusion matrix for each technique. TP is the number of right recommendations for a single co-
change, similar to the practical scenario described in Section II.B. TN values are related to recommendations in which the co-
change did not occur but only one file changed in a specific commit. 

Table 3. Confusion matrix values for contextual information and association rules models 
Models TP FP FN TN 

ACI 5,264 765 652 13,288 
NCI 19,746 10,007 6,443 101,167 
AR 26,189 111,174 0 0 

We found that models built using numeric contextual information correctly predicted 19k co-changes covering 24.62% of 
all possible co-changes that happened in all tested releases. Association rules covered 32.94% of all co-changes, correctly 
predicting 26k co-changes. The coverage of the former ranged from 2.54% (SolR) to 68.76% (Derby). Association coverage 
ranged from 5.42% (SolR) to 79.70% (Derby). The models built with numeric contextual information and association rules 
were able to test all 137k co-changes that happened in 54k commits. 

Inspecting the dataset, we observed that models built with all contextual information (ACI) discarded commits from the test 
set for which string values were not found in the training set, e.g., if a new developer committed a file in release 2.1 (test set) 
but not in release 2.0 (training set). Because of this, using categorical information combined with numeric information reduced 
the number of analyzed co-changes to 6.62% of all co-changes, correctly predicting 5k co-changes. 

To evaluate the quality of the predictions, we compared the values of precision, recall, F-measure and MCC by project, 
support, and confidence thresholds. Table 4 presents an overview of the evaluation metrics. Recall, precision, F-measure, and 
MCC indicate how accurately the all contextual information, numeric contextual information, and association rules models can 
predict co-changes. We could observe that all contextual information models (ACI) have higher values of MCC and F-measure; 
however, they have fewer true positives than numeric contextual information (NCI) and association rules (AR) models. 

Table 4. Overview of evaluation metrics 
Models Recall* Precision* F-1* MCC* % FP % FN 
ACI 0.87 0.89 0.88 0.83 14.53 4.91 
NCI 0.66 0.75 0.71 0.63 51.31 6.49 
AR 0.19 1.00 0.32 N/A 81.17 0.00 

* average values over all releases evaluated 
We found that numeric contextual information models have a value of F-measure twice as high as that of association rules 

models. In terms of correct recommendations, numeric contextual information models issued 1 correct co-change recommen-
dation every 1.38 attempts. Association rules issued 1 correct co-change recommendation every 5.24 attempts. We also ob-
served that NCI models have 57.8% false alarms (% FP + % FN). Comparing the number of false alarms with AR models, we 
observed that NCI models have 23.37% fewer false alarms, leading to 30,828 commits with fewer false alarms. MCC shows 
the correlation between what we observed in each commit and what we predicted for each commit. Contextual information 
showed a high correlation between observed and predicted values. MCC can be interpreted similarly to other types of correla-
tion, e.g., Pearson and Spearman. In this sense, we consider that values higher than 0.6 indicate strong correlation and values 
higher than 0.8 indicate very strong correlation. We could not calculate MCC values for AR since these models are used only 
to recommend co-changes. 

Figure 2 presents the F-measures for all contextual information models (first boxplot), association rules models (second 
boxplot), and numeric contextual information models (third boxplot). We notice that the boxplots for the model using the all-
contextual-information range from 0.0 to 1.0 in six cases (Camel, Cassandra, Hadoop, Hive, Lucene, and Solr). These models 
can thus be very good or very bad when predicting co-changes. However, the median F-measure of these models was higher 
in 7 out of 10 projects when compared to the F-measure from numeric contextual information and association rule models.  

Observing the median values, association rule models performed better than numeric contextual information and all contex-
tual information models in the Camel project. Numeric contextual information models performed better than all contextual 
information and association rules models in the Cassandra and Solr projects. In five projects (Cassandra, CXF, Derby, Hbase, 
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and Lucene), models based on contextual information performed better than association rule models. Especially in CXF and 
Derby, the difference of quality is very evident. 

 

 
Figure 2. F-measure values to predict co-changes by project considering all releases 
 

Figure 3 presents the F-measure values to predict co-changes for different thresholds of support and confidence. We chose 
these values based on the literature (Zimmermann et al. 2005; Bavota et al. 2013) and the analysis of the distribution of these 
values. In the graph depicted in Figure 3, the black line represents the all-contextual-information models; the light grey repre-
sents the numeric contextual information models; and the grey line indicates the association rules models. The last line indicates 
the percentage of co-changes that can be predicted using only the specific threshold of support and confidence. 

The F-measure for numeric contextual information models values ranged from 0.56 to 0.86. The F-measure for association 
rules models values ranged from 0.26 to 0.50. Numeric contextual information models had more true positives than the all-
contextual-information models, but the latter had higher F-measures. 



 

 
Figure 3. Average F-measure values to predict co-changes by thresholds of support and confidence  

Association rules models obtained their best F-measure when support was at least 8 and confidence was at least 70%. How-
ever, using only these rules to predict when the expected co-change occurred, the coverage decreases considerably. 

Models based on contextual information improved the quality of co-change prediction (F-measure values) compared to the 
association rules model. Even with high values of support and confidence, contextual information models outperformed asso-
ciation rules. 

3.2 (RQ2) What are the most influential kind of contextual information when predicting co-changes? 
As we mentioned in Section 2.2 – Step 5, we computed Breiman’s variable importance score (Breiman 2001) to determine the 
influence of each predictor. In Table 5, we report the average variable importance score considering the numeric contextual 
information models. The grey cells highlight the TOP 5 types of contextual information for each project. It is hard to define the 
best subset, since all types of contextual information were frequently used by random forest to predict co-changes. However, 
we can observe that six metrics (#3, #4, #6, #15, #16, and #17) obtained the best scores across all projects. 

We also analyzed the performance considering only the three best metrics from the commit context (metrics #15, #16, and 
#17 – Table 5) against the three best metrics from the social information dimension (metrics #3, #4, and #6 – Table 5). We 
found a small effect size difference in favor of commit context when the F-measure average was compared (56% vs. 50%) 
across all projects analyzed.  

The results suggest that, to identify whether a co-change will occur in a specific commit, it is important to analyze the 
number of lines added and removed and the code churn. On the other hand, it is also important to use information from social 
aspects related to the number of comments and how “close” the developers are in the communication network. Closeness is an 
indicator of how spread the information is between the developers (Bird et al, 2009). We also observe that the length of the 
discussion plus the length of the issue report (description), measured by wordiness, is an influential characteristic to predict co-
changes. 

Finally, it is important to highlight that it is possible to use only data from the commit context to build the classifiers. The 
metrics related to the number of lines of code added and removed and the code churn were frequently selected by the classifier 
as important contextual information in 6 out of 10 projects. We found that it is possible to achieve an F-measure of 56% (on 
average) by using only this information versus 32% by using association rules models. 

This result is particularly interesting because even using only information from commits – the same source necessary to 
perform association rules analysis – the co-change prediction can be improved. 
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On average, the numeric contextual information models used 6 out of 17 metrics. The metrics related to Commit (#15, #16, 
and #17), Communication (#3 and #4), and Developer Role (#6) obtained the highest importance score over all releases ana-
lyzed. 

Table 5. Average of variable importance score for each kind of contextual information 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Camel 24.7 21.5 41.8 59.5 3.9 32.0 22.1 27.0 23.3 22.2 24.5 27.2 22.5 15.1 50.7 49.9 63.1 
Cassandra 23.4 22.5 48.2 56.5 13.8 51.4 45.7 43.0 46.6 45.5 23.9 35.4 33.2 8.8 51.0 51.6 65.8 

Cloudstack 19.1 19.5 54.3 52.2 22.1 48.6 41.2 35.8 46.4 40.7 19.6 27.0 39.0 15.5 37.8 32.4 57.2 
CXF 22.5 21.4 32.8 58.0 1.5 21.8 15.7 17.7 13.6 16.4 22.9 17.7 10.6 13.2 53.3 52.1 62.2 

Derby 25.5 17.8 37.1 40.8 13.6 38.7 34.8 32.8 30.8 33.1 25.6 32.6 26.3 13.0 53.9 53.4 64.1 
Hadoop 27.8 23.8 45.5 50.5 25.0 50.5 45.4 44.5 45.9 45.9 28.7 40.7 41.4 11.7 39.9 39.0 53.5 

Hbase 26.5 24.5 43.7 49.5 26.7 47.8 41.7 43.9 43.0 44.2 26.6 39.9 37.6 12.5 40.2 39.5 53.6 
Hive 27.9 20.5 49.3 55.4 21.0 49.3 44.2 46.3 44.5 46.0 28.1 39.1 35.5 12.0 38.6 38.9 52.9 

Lucene 23.5 13.0 34.3 38.9 17.6 37.3 32.0 32.0 31.0 33.3 25.2 29.4 26.4 14.4 56.4 54.6 65.7 
Solr 21.3 16.4 48.3 52.9 15.7 45.2 34.4 37.7 41.5 37.2 23.7 32.5 27.8 14.2 51.7 55.2 76.0 

Total 24.2 20.1 43.5 51.4 16.1 42.3 35.7 36.1 36.7 36.4 24.9 32.1 30.0 13.1 47.3 46.7 61.4 
1 - # of Issue discussants, 2 - # of Issue Developer Commenters, 3 - # of Issue Comments, 4 – Issue Wordiness, 5 – Betweenness centrality, 6 – Closeness 
centrality, 7 – Efficiency, 8- Effective Size, 9 – Constraint, 10 – Hierarchy, 11 – Size, 12 – Ties, 13 – Density, 14 – Diameter, 15 - # of lines of code added, 
16 – # of lines of code deleted, 17 – Code Churn 

 

4 DISCUSSION 
We discuss our results from the perspective of the implications for practice and research, and how developers see the results. 

4.1  Implications for Practice and Research 
We investigated the tradeoff between the coverage and accuracy when we predict if an expected co-change occurred in a 

specific commit. We found that association rules models can retrieve more co-changes, but these models suffer from false 
recommendation that decreases their prediction accuracy. 

To improve the accuracy of association models, the rules need to be more relevant with high values of support and confi-
dence, but the coverage becomes smaller. In a practical scenario, choosing the best thresholds is not easy (Zimmermann et al. 
2005). Hence, models based on contextual information are simpler because they do not require prior configuration. We used a 
random forest algorithm with default configuration. However, it is important to mention that the effort to collect data is higher 
for contextual information models because association rules only depend on commit data. 

Models based on contextual information have a smaller coverage, but are more accurate, improving the precision in relation 
to association rule models. The use of machine learning techniques combined with contextual information reduced the number 
of false recommendations, capturing the context when an expected co-change occurs in a specific commit. The contextual 
information models achieved high accuracy in projects with a large number of commits (such as CXF, Derby, and Hbase). On 
the other hand, in projects with fewer commits (such as Cloudstack and Solr), association rule models showed better results. 

The use of contextual information is promising, however, it is an open question how much context is necessary to improve 
coverage and accuracy. We did not test the entropy of changes in these projects, but the entropy of changes can show the 
possible effects of disorder caused by continuous changes (Hassan 2009; Canfora et al. 2014). 

Another important question that arises from our study is related to the period when the training and test set were created. A 
release period often focuses on a specific goal, for example, correcting critical bugs, refactoring some part of the project, or 
implementing new features. It is not clear what the effect was of choosing this timeframe. We conjecture that a release can 
capture “related context” to build training sets.  

Using textual and Boolean metrics in contextual information models, we could improve the accuracy of co-change predic-
tions. However, the coverage was penalized. In open source projects, these sources of contextual information may not be 
feasible, since developers may contribute only occasionally, making sporadic commits or reporting issues. However, these 
metrics can be good indicators in enterprise environments, when all contributors are previously known.  

 
4.2 Community Feedback 



 

To adopt the approach in practice, developers’ perspectives are crucial. To explore how developers of the analyzed project see 
the results, we sent messages to the developers’ mailing list of each analyzed project. We asked the developers to share their 
impressions about our results, highlighting that we did not use any information related to structural dependencies to predict 
which files would co-change. We also asked their impression of the influence of contextual information and how the approach 
would help them in practice. 

We created a website5 for each community, presenting a practical example such as the one described in Section 2, the details 
of the method used to predict co-changes, and a spreadsheet with the results. We received more than 500 pageviews and re-
ceived feedback and interacted with 20 distinct developers. 

According to the developers, the proposed approach can be used in practice, especially to support newcomer developers to 
navigate through the code and complete the changes. This can be observed in a message from a CXF developer: “…I agree 
with Chris [fictitious name] that may be useful to help newcomers to navigate in the project [to make their contributions] …” 
However, some developers disagreed that the approach would be useful during code review.  

Regarding the importance of contextual information to predict co-changes, developers were surprised by the results, since 
it is a common practice to find artifacts that are structurally connected or contained in the same package. A developer from 
Derby said: “... yes, I agree that is the normal way. Also through code review, running tests, and messages from the compiler. 
Is your idea that, given a database of change history as you have described it, some tool would be able to notice when the 
developer makes a certain type of change, and then suggest other related changes that are typically made at the same time…? 
[Yes]… I think that's a pretty interesting idea.” CloudStack developers suggested that the approach could be used to guide 
developers during the test phase. CloudStack uses Test Driven Development, and sometimes it is very hard to find related 
classes that need to be instantiated to write test cases.  

Developers also discussed the real example described in the message. For example, a developer from Lucene/Solr inspected 
the results and identified co-changes in which the prediction models captured commits involving changes in both projects at 
the same time. In such cases, the developer suggested that it is interesting to make a prediction “between projects,” especially 
when commits to a project cause or require changes in an associated sub-project.  

In addition to the suggestions, developers discussed and pointed out a limitation of the proposed approach. There are cases 
in which a new file could have been created and the absence of historical information would not allow execution of the predic-
tion models. A CloudStack developer suggested using the history of files in the same package to build prediction models for 
new files. According to the developer, files of the same package could have “a similar context,” and this context could be used 
to deal with this “cold start” problem. 

5 RELATED WORK 
Researchers have relied on coupling concepts to recommend co-changes. For example, Zimmermann and colleagues (Zimmer-
mann et al. 2005) built an Eclipse plug-in that collects information about source code changes from repositories and warns 
developers about probable co-changes. They used association rules to suggest change coupling among files at method and file 
levels. The authors reported precision values around 30% and recommended that the analysis should be made at the file level 
instead of method level. More recently, the TARMAQ algorithm was proposed (Rolfsnes et al. 2016) to improve this approach.  

Zhou et al. (Zhou et al. 2008) proposed a model to predict co-changes using Bayesian networks. They extracted features like 
static source code dependencies, past co-change frequency, age of change, author information, change request, and change 
candidate. They conducted experiments on two open source projects (Azureus and ArgoUML) and reported precision values 
around 60% and recall values of 40%. 

Recently, Sun et al. (Sun et al. 2015) compared three tools based on coupling concepts. They compared ROSE (association 
rules) (Zimmermann et al. 2005), IRC2M (conceptual coupling), and Columbus (structural coupling). The combination of any 
two approaches improved the accuracy in general terms, however, the combination of three approaches did not improve the 
results. The authors reported recall values ranging from 55% to 70% and precision values between 30% and 45%. 

Our paper differs from previous work since we consider previously unused contextual information. We also tested the results 
in 10 projects. In general, 4 projects were used by previous research. Using information related to developers' communication 

                                                        
5	Example	for	Derby	project:	http://igor.pro.br/cochanges/derby.html	
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and issue context is new and presented promising results to reduce the number of false positives and negatives. Future work 
can investigate how to develop hybrid approaches to obtain even better results. 

6 THREATS TO VALIDITY 
In the following, we discuss the threats to the validity of our study. 

A threat related to co-change identification is tangled commits (Herzig and Zeller 2013), since developers often commit 
unrelated or loosely related code changes in a single commit. In our study, this threat is limited, as we are linking commits per 
issue. In addition, we performed a careful selection of issues, using issues that were closed, fixed, and for which the source 
code was integrated.  

The set of metrics used might not be complete. We dealt with this threat by performing a selection of measurements along 
different dimensions of software development. We chose metrics from contextual information related to issue, communication, 
and commit metadata. To select the set of metrics, we were inspired by previous work on prediction models and a mapping 
study (Wiese et al. 2014a).  

Another concern is related to overfitting. In prediction models, overfitting occurs when a prediction model has random error 
or noise instead of an underlying relationship. Our models were planned to be specific to each pair of files. To address the 
overfitting of our classifiers, we used the random forest algorithm. According to the literature (Breiman 2001; McIntosh et al. 
2014), during the model training phase the algorithm selects contextual information with less correlation. Furthermore, training 
and test sets were always from different releases, i.e., release N to build the training set and release N+1 to test. In any case, 
the usage of a high number of metrics may influence the results for each classifier, making them more accurate. However, it is 
important to highlight that on average the numeric contextual information models used 6 out of 17 metrics, and it is possible 
to achieve F-measure values of 56% (on average) by using only three metrics from commit information versus 32% by using 
association rules models (RQ2). 
External Validity: In our analysis, we collected data from 10 Apache projects. Each project was selected to reflect different 
domains and communities, which may reflect the way that the software changes. However, our results might not generalize to 
other communities and projects. Replication of this work in a large set of systems is required in order to achieve more general 
conclusions. 

7. CONCLUSIONS 
Co-change prediction approaches aim to assist developers in identifying artifacts that are likely to change together. Previous 
approaches rely on different types of software coupling to make recommendations of co-changes. In this paper, we investigated 
novel sources of information. Based on the idea that artifacts change for different reasons, we gathered contextual sociotech-
nical information from tasks, communication, and commit metadata from software changes to build prediction models to iden-
tify when a co-change occurs in a specific commit.  

We set out to investigate the coverage and accuracy of contextual information by studying 10 Apache projects. The main 
contributions of this work are:  

• An approach to build customized models for each pair of files based on contextual information: according to the 
effect size measure, contextual information models have more accuracy to predict co-changes than association 
rules, regardless of the support and confidence thresholds (RQ1).  

• To identify the most influential subset of contextual information: we could identify the best subset of metrics related 
to contextual information. We found that social aspects are relevant to predict co-changes, especially the length of 
discussion collected from issue reports and how “close” developers are in the social communication network. The 
number of lines of code added and removed and code churn were also important metrics used by the co-change 
prediction models (RQ2). 

In conclusion, we found that contextual information has two advantages when compared to association rule models: (i) it 
reduces the number of false recommendations, and (ii) it determines, independent of thresholds, if a dependency is strong 
enough to be used as a co-change indicator. We are currently building a tool to test our approach in projects from outside the 
Apache Software Foundation, as well as compare it to other types of couplings used to recommend co-changes. 
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