
How Does the Shift to GitHub Impact Project
Collaboration?

Luiz Felipe Dias1 Igor Steinmacher1 Gustavo Pinto2 Daniel Alencar da Costa3 Marco Gerosa4
1UTFPR, Brazil 2IFPA, Brazil 3UFRN, Brazil 4USP, Brazil

luizdias@alunos.utfpr.edu.br, igorfs@utfpr.edu.br, gustavo.pinto@ifpa.edu.br, danielcosta@ppgsc.ufrn.br, gerosa@ime.usp.br

Abstract—Social coding environments such as GitHub and
Bitbucket are changing the way software is built. They are
not only lowering the barriers for placing changes, but also
making open-source contributions more visible and traceable.
Not surprisingly, several mature, active, non-trivial open-source
software projects are switching their decades of software history
to these environments. There is a belief that these environments
have the potential of attracting new contributors to open-source
projects. However, there is little empirical evidence to support
these claims. In this paper, we quantitatively and qualitatively
studied a curated set of open-source projects that made the
move to GitHub, aiming at understanding whether and how
this migration fostered collaboration. Our results suggest that
although interaction in some projects increased after migrating
to GitHub, the rise of contributions is not straightforward.

I. INTRODUCTION

Along with the growth of open-source software (OSS), a
wide range of social coding environments was created to
support software development. These environments, which
are particularly rich when it comes to collaboration features,
changed the way that software developers communicate in,
collaborate at, and contribute to OSS projects [1]. This is
influenced by their contribution flow, the so-called pull-request
model [2]. Developers clone (or “fork”) the project, implement
changes, and send the modifications back to the original
project through a pull-request, which is evaluated by and
discussed with project members.

Social coding environments helped to increase the number
of contributors to OSS [2], [1], [3]. Gousios et al. [4] observed
that in January 2016, 135,000 open-source projects hosted
on GitHub, received more than 600,000 PRs. In addition,
an increasing number of software developers are becoming
open-source contributors [5], even though some of them do
not wish to become active members [3]. This fact introduced
the recurring belief that social coding environments foster
engagement and collaboration within a project.

In this study, we investigate whether this growth in pop-
ularity can also be translated to contributions. Therefore, we
selected a curated set of popular open-source projects that used
to be hosted on non-collaborative coding environments (e.g.,
Sourceforge) and moved to GitHub. Using data acquired from
their repositories and a survey, we analyzed whether the mi-
gration process attracted more contributors and contributions.
Among the collaborative coding environments, we focused
on GitHub because of its popularity (it contained over 35

million repositories and more than 14 million contributors1). In
addition, GitHub is often used in recent software engineering
studies (e.g., [3], [6], [7], [8]).

The main contributions of this paper are: (1) comparing
quantitatively and qualitatively the contributions performed
in popular OSS projects, before and after their migration to
GitHub; (2) surveying project developers in order to cross-
validate and further investigate the results; (3) making the
dataset used in this study available2.

II. RELATED WORK

Studying collaborative coding environments is an emerging
direction. In this section we describe the studies overlapping
with the scope of our work.
Github Social Features. Marlow et al. [9] found that devel-
opers use signals (skills, relationships, etc.) from the GitHub
profile to form impressions of users and projects. Dabbish et
al. [10] noticed that the number of watchers of a project serves
as a social cue to attract developers. In sequence, Tsay et al. [8]
found that both technical and social information influence
the evaluation of contributions. McDonald and colleagues [5]
found that the features provided by GitHub are cited as one
of the main reasons to the increasing number of contributions
and contributors to a project. These studies focused on col-
laborative coding environment features as drivers to attract
developers and to generate signals to form impressions about
projects and developers. However, they do not investigate how
the migration to social coding environments influences the
onboarding of new members and the number of contributions
received by the projects.
Influence of Social Factors. Some studies focus on analyz-
ing the influence of social factors in the retention of new
developers [11], [12], [13]. These studies analyzed social
networks (e.g., mailing lists) in order to understand (1) with
whom new developers collaborate, and (2) how the networks
evolve. Although these studies focus on the relationship of
social aspects and onboarding of contributors, they do not
analyze social coding environments as contribution drivers.

III. RESEARCH METHODOLOGY

In this section we state our RQ (§ III-A), the subjects under
investigation (§ III-B), and the research approach (§ III-C).

1https://github.com/about/press
2To be publicize upon acceptance.

https://github.com/about/press

A. Research Question

We investigated the following overlooked research question:

RQ0 How does the shift to GitHub impact projects’ collabora-
tion?

By projects’ collaboration, we compared (1) the number of
newcomers, active contributors, and contributions, (2) number
of PRs received, and (3) number of issues created.

B. Subjects

For evaluation, we used a variety of software projects that
migrated to GitHub: jenkins, ruby, rails, jquery,
mongodb, and joomla!. Table II summarizes the character-
istics of the studied projects. Some projects lack issues data
because, although hosted on GitHub, they do not use GitHub’s
issue tracking system.

We selected these projects because they are: non-trivial
(most of them with hundreds of thousands lines of code and
use more than one programming language); well-established
(with an average of 12 years old); active (they received an
average number of 64 PRs per month and an average of 429
contributions in the last 12 months performed by 500 different
contributors) and diverse (projects from different domains and
written in different programming languages).

C. Research Approach

We conducted a two-step approach, investigating data and
meta-data of the studied projects and questionnaires.

1) Mining Subjects: We used mining software repositories
techniques to collect the following projects’ characteristics:

• The number of newcomers that have joined the project
over time, number of contributions (i.e., commits) that
have been performed to the project, the number of active
contributors in a given time window.

• The number of PRs that are either opened, closed, or
merged.

• The number of issues that are either opened or closed.

Next, we compared the distributions of each collected metric
before and after the migration of the studied subjects. To
perform the comparisons, we used Mann-Whitney-Wilcoxon
(MWW) tests [14] and Cliff’s delta effect-size measures [15].
Both statistical tools are non-parametric, which means they
do not require our collected metrics to follow a normal distri-
bution. We use MWW tests to compare if two distributions
do come from the same population (α = 0.05). We used
Cliff’s delta to verify how often values in one distribution
are larger than values in another distribution. The higher the
value of the Cliff’s delta, the greater the difference between
distributions. A positive Cliff’s delta shows how larger are
the values of the first distribution, whilst a negative Cliff’s
delta shows otherwise. We use the thresholds provided by
Romano et al. [16]: delta < 0.147 (negligible), delta < 0.33
(small), delta < 0.474 (medium), and delta >= 0.474 (large).

2) Surveying Subjects: After collecting the data from the
repositories, we designed our survey not only to cross-validate
our findings from the repositories but also to gain further
insights from the communities. Our survey is based on the
recommendations of Kitchenham et al. [17]. Before sending
the final survey, we conducted a pilot study and rephrased our
questions whenever necessary.
Survey Questions. We designed the following three general
open questions:
Q1 What motivated the project to move to Github? How do

you evaluate the benefits of this migration?
Q2 Does this snapshot make sense? Did you find any incon-

sistency on the data?
Q3 Do you have any internal policy to promote/attract/retain

newcomers? If so, do them succeed?
In addition to these questions, we also asked specific

questions. The specific questions were aimed at revealing the
reasons behind particular trends observed in each figure, for
instance, why did the number of contributors decrease in a
given time window, or why did the project attracted so much/so
few external contributors? When relevant, we highlight them
in Section IV.
Survey Application. We sent out the questionnaire by means
of issues on the repositories. This approach worked as an
effective feedback loop between the researchers and the re-
spondents, making it easy to further clarify questions. For the
repositories that do not use the issue tracking system, we sent
the questionnaire by means of their official mailing lists.

During a period of over 30 days, we received 4 answers,
although only 3 of them were analyzed. One was discarded
because it did not provide any valuable insight. In total, we
accumulate 16 messages from 11 participants. To compile the
survey results, we qualitatively analyzed the answers following
open-coding and axial-coding procedures [18].

IV. RESEARCH RESULTS

We organize our findings in terms of Contributions and
Contributors (§ IV-A), PRs (§ IV-B), and Issues (§ IV-C).

A. Contributors and Contributions

To provide an overview of our dataset, Figure 1 presents
a temporal perspective of different characteristics. The dotted
green line represents the number of newcomer contributors that
successfully placed at least one source code contribution to the
project repository. The dotted blue line represents the number
of contributions performed during the software lifetime. The
red line represents the number of active contributors in the
particular time window. Contributions can be performed in
terms of commits or PRs. The vertical dotted line indicates
when the project migrated to GitHub. Finally, all of our
obtained statistical results (p− values and effect-size values)
can be found in Table II.
Recruiting Newcomers. We observed that some projects
attacked a significant number of contributors right after the
project moved to GitHub, such as rails (p−value = 0.001

TABLE I
THE DIVERSITY OF OUR TARGET APPLICATIONS. LOC MEANS LINES OF CODE. MAIN PL MEANS MAIN PROGRAMMIN LANGUAGE. PR MEANS

PULL-REQUESTS. AGE IS PRESENTED IN YEARS.
Pro

jec
ts

Dom
ain

Lau
nc

he
d

in

M
igr

ate
d

in

M
ain

PL

LoC Com
mitt

er
s

Com
mits

Iss
ue

s

PR Age

jenkins Continuous Integration Server Nov. 2006 Nov. 2010 Java 191K 556 21K — 2K 10
ruby Programming language Jan. 1998 Feb. 2010 C and Ruby 1,001K 95 40K — 1K 18
rails Web-application framework Nov. 2004 Apr. 2008 Ruby 203K 3K 53K 8K 15K 12
jquery JavaScript library Mar. 2006 Apr. 2009 JavaScript 41K 263 5K 838 2K 10
mongodb NoSQL database Oct. 2007 Jan. 2009 C++ 2,104K 324 31K — 1K 9
joomla! Content Management System Aug. 2005 Sep. 2011 PHP 610K 726 26K 2K 8K 11

Ruby Jenkins Rails

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

Years

0

5

10

15

20

25

30

35

#
 C

o
m

m
it

te
r

/
N

e
w

co
m

e
r

M
ig

ra
te

d

0

100

200

300

400

500

600

700

800
#

 C
o
n
tr

ib
u
ti

o
n
s

Contribution
Committer
Newcomer

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

Years

0

5

10

15

20

25

30

35

40

#
 C

o
m

m
it

te
r

/
N

e
w

co
m

e
r

M
ig

ra
te

d

0

50

100

150

200

250

300

350

400

#
 C

o
n
tr

ib
u
ti

o
n
s

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

Years

0

50

100

150

200

250

300

#
 C

o
m

m
it

te
r

/
N

e
w

co
m

e
r

M
ig

ra
te

d

0

200

400

600

800

1000

1200

#
 C

o
n
tr

ib
u
ti

o
n
s

JQuery MongoDB Joomla!

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

Years

0

5

10

15

20

#
 C

o
m

m
it

te
r

/
N

e
w

co
m

e
r

M
ig

ra
te

d

0

50

100

150

200

250

#
 C

o
n
tr

ib
u
ti

o
n
s

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

Years

0

10

20

30

40

50

#
 C

o
m

m
it

te
r

/
N

e
w

co
m

e
r

M
ig

ra
te

d

0

200

400

600

800

1000

#
 C

o
n
tr

ib
u
ti

o
n
s

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

Years

0

10

20

30

40

50

60

70

#
 C

o
m

m
it

te
r

/
N

e
w

co
m

e
r

M
ig

ra
te

d

0

100

200

300

400

500

600

700

#
 C

o
n
tr

ib
u
ti

o
n
s

Fig. 1. A temporal perspective of the number of contributions and contributors that on boarded in the project. The vertical dashed line in each chart
indicates when the studied project have migrated to github.

TABLE II
STATISTICAL RESULTS. GREEN CELLS INDICATE LARGE EFFECT SIZE,

WHEREAS YELLOW CELLS INDICATE MEDIUM EFFECT SIZE.

Projects Newcomers Contributors Contributions
p-value delta p-value delta p-value delta

jenkins 0.001 0.131 2.66−06 0.147 0.138 -0.031
ruby 0.489 -0.015 5.16−07 0.106 2.20−16 0.478
rails 0.001 0.460 2.20−16 0.633 2.20−16 0.635
jquery 0.060 0.160 0.001 0.144 0.035 0.066
mongodb 0.178 0.143 1.41−07 0.403 2.20−16 0.710
joomla! 0.006 0.206 2.20−16 0.299 0.378 -0.018

with a medium delta = 0.46). In the rails project, the
number of newcomers raised from 15 (before migration) to 67
(three months after migrating). On average, rails received
872 different newcomers per year. When asked why this
happens, rails members suggested that one of the reasons
are the GitHub’s social features: “It is easier to contribute.
Traditional workflow of sending an email with the patch to an
obscure mailing list while works, is not very user-friendly.”
One jenkins team member corroborates this finding: “I
think most projects that migrate there from other platforms
obtain more contribution due to the basic popularity of GitHub
and visibility.”
Repelling Newcomers. On the other hand, other projects
recruited fewer newcomers. For instance, ruby, in about two

decades of software development, attracted only 96 different
contributors (a rate of 5 newcomers per year). Since this
particular project did not answer our survey, we hypothesize
that this slow pace in attracting source code contributors might
be related to the complexity of its internal code or domain.

Another reason is that the ruby programming language
became popular around the 2000s, whereas GitHub was
launched only in 2008 and became popular around 2011.
Thus, the ruby project did not experience the benefits of
GitHub’s social features during its rise of popularity. Fi-
nally, the contribution guideline followed by ruby develop-
ers do not seem to facilitate contributions: “Pull-request to
https://github.com/ruby/ruby is acceptable for tiny fixes. But
PRs which need discussions will be simply ignored.”3

Dealing With Newcomers. In our survey, we asked if the
project has any internal policy to deal with newcomers.
However, none of the respondents mentioned such kind of
policy, as one respondent said: “Our team don’t have any
strong policy other than: be nice with the newcomers, give
them the attention that they deserve, give them good feedback
and try to motivate them to solve their own problems.” A
jquery respondent mentioned that, instead of an internal

3https://bugs.ruby-lang.org/projects/ruby/wiki/HowToContribute

policy, they use conferences and summits as means to attract
new contributors: “...developers summits and organic conver-
sation in person have played the biggest roles in attracting
newcomers.” Still, another team member raised the fact that
in the end of 2012, when the jquery project faced a burst
of newcomers, they held their first developer summit.

Rails data shows that the migration to GitHub played
a major role in attracting more newcomers. However, such
effect did not happen to the remaining projects. Our results
suggest that there might be other factors related to the
project, such as conferences and summits, that may help
to attract newcomers.

The migration to GitHub may have an impact on the rise
of contributions. We could find evidence that the migration
to GitHub is related to the increase of contributions of the
majority of the studied projects. We observed that rails,
mongodb, and ruby projects achieved large effect-sizes
when we compare the number of contributions after the
migration (delta = 0.635, delta = 0.710, and delta = 0.478,
respectively). As for the number of contributors, we observed
that rails and mongodb projects also achieved signifi-
cant effect sizes after the migration (large difference with
delta = 0.633 and medium difference with delta = 0.403,
respectively). Nevertheless, we did not observe a substantial
impact to the remaining projects. Overall, we observed that
the migration to GitHub may play a major role to the rise
of contributions in some of the studied projects (2 out of 5 in
terms of contributors and 3 out of 5 in terms of contributions).
However, there might be other project related factors (e.g.,
developer responsiveness and effective coordination) that may
be hindering the increase of contributions in some projects.
This was mentioned by one jenkins developer “It’s going
to be hard to untangle what factor contributed how much.”
[to the amount of contributions received by the project].

B. Pull-Requests

As regarding PRs usage, Figure 2 shows the number of PRs
opened, closed, and merged over time.
The rise of PRs is not guaranteed. Since PR is usually the
main channel to provide changes to GitHub hosted projects,
one might expect that the number of PRs increases over time.
However, our results suggest that this belief only holds for
the ruby project. In this project, the number of PRs increased
about 4 times from 2012 to 2016. In contrast, projects jquery
and mongodb present a reduction on the overall number of
PRs. This is, however, not related to a decrease in the overall
number of contributions, as we saw in Figure 1. One reason
that might explain this behavior is that core team members
are not required to submit code changes through PRs; since
they have write access to the repository, they can push changes
directly to the main branch.
Several PRs are submitted, few got merged. Notwithstanding,
as aforementioned, the ruby project uses PRs only for tiny
fixes. As a result, we found that only 3 out of the 1,223

Jenkins Rails

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

Years

0

10

20

30

40

50

60

#
O
cc
u
rr
e
n
ce
s

Opened
Closed
Merged

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

Years

0

50

100

150

200

250

300

350

400

#
O
cc
u
rr
e
n
ce
s

Opened
Closed
Merged

Mongo JQuery

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

Years

0

10

20

30

40

50

#
Oc

cu
rre

nc
es

Opened
Closed
Merged

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

Years

0

20

40

60

80

#
O
cc
u
rr
e
n
ce
s

Opened
Closed
Merged

Ruby Joomla!

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

Years

0

10

20

30

40

50

60

#
O
cc
u
rr
e
n
ce
s

Opened
Closed
Merged

20
11

20
12

20
13

20
14

20
15

20
16

20
17

Years

0

100

200

300

400

#
O
cc
u
rr
e
n
ce
s

Opened
Closed
Merged

Fig. 2. Number of PRs opened (red lines), closed (blue dotted lines), and
merged (green dotted lines).

proposed PRs got merged. Projects mongodb and jquery
present a similar behavior (9.86% and 8.20% of the PR got
merged, respectively).

We manually investigated the ruby PRs that got merged
and found that two of them were, indeed, tiny fixes (PR
#557 and #194), but the third one (#125) was not (it has
379 additions and 9 deletions). However, the latter PR was
performed by a ruby core developer, which usually does not
need to follow the PR review cycle.
Steady flow of PRs. Although with variances, projects
jenkins and rails present a steady flow of PRs contribu-
tions. On average, the rails project receive 2,072 PRs per
year (variation: 1,478.73), whereas jenkins received 432.4
PRs per year, which a variation of 275.80. Also, these two
projects present the highest rate of merged PRs, which might
explain the steady flow of PR contributions, (i.e., if core team
members are accepting external contributions, it is likely that
external contributors will keep contributing).

C. Issues

Figure 3 shows the number of issues created and closed
during the lifetime of the analyzed projects. This figure shows
the projects that use GitHub’s issue tracking.

There is a peak in the number of issues right after the
project start using GitHub. This happens with the rails and
jquery projects. In average, the rails project has a rate
of 136 new issues per month. In comparison, a total of 735
issues were created in the first month. A similar trend, but
on a lower scale, is observed in jquery. We believe this
happens because developers need to migrate their issues from
other issue tracking system to GitHub. Yet, we hypothesize
that not all projects are using GitHub issue tracking systems
in order to avoid the initial effort required. On the other hand,

Rails JQuery

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

Years

0

100

200

300

400

500

600

700

#
O
cc
u
rr
e
n
ce
s

Opened
Closed

20
14

20
15

20
16

20
17

Years

0

20

40

60

80

100

120

#
O
cc
u
rr
e
n
ce
s

Opened
Closed

Joomla!

20
11

20
12

20
13

20
14

20
15

20
16

20
17

Years

0

50

100

150

200

#
O
cc
u
rr
e
n
ce
s

Opened
Closed

Fig. 3. Number of issues closed (blue dotted lines) and opened (red lines).

joomla! presents a distinct scenario. During 2011 and 2014,
there is a slow flow of issues. However, it peaks after mid-
2014. Analyzing these issues, we found that in the second half
is in fact related to the migration process from another issue
track system, which corroborates to our hypothesis.

V. DISCUSSIONS

Lessons Learned. First, we observed that the rise of contribu-
tions after the migration to GitHub is not straightforward. In-
deed, one project faced a decrease in the flow of contributions.
So the belief that GitHub itself will be effective in attracting
new contributors to OSS projects does not capture the whole
picture, although some project members agree that GitHub’s
features increase project visibility. Second, we found that
little effort was placed on policies for attracting or retaining
newcomers. Some projects use conferences and summits to
attract new contributors. Third, we found that some projects
have a high rate of PRs closed and not merged. Thus, if the
project is not intended to use PRs, team members should state
this upfront (i.e., in the README file). Therefore, contributors
willing to contribute will not spend their time providing PRs.
Fourth, project members willing to move to GitHub might
expect an overhead on managing issues migrated from other
issue tracking system. Thus, project members should carefully
consider this option.
Threats to Validity. One might argue that we analyzed a
few number of open-source projects and, therefore, it lim-
its the generalization of our results. However, the selected
open-source projects are diverse in terms of domain, size,
and age. Another threat to validity is related to how we
disambiguate commit authors. Since some of the analyzed
projects moved from SVN-based environments, which do not
distinguish author from committer, we used email address to
disambiguate commit authors. However, SVN does not require
one to inform his email. Also, one contributor might use
different emails to perform different contributions. These facts
have the potential of creating false-positive contributors, i.e.,
the same contributor is counted more than once. To mitigate
this threat, we used a disambiguate technique. Also, we asked
team members whether our data make sense. Finally, we used

statistical methods to mitigate the threats of generalizing data
based on our personal hypothesis.

VI. CONCLUSIONS

Social coding environments are changing the way software
is built. These environments leverage social features that make
contributions to software much more visible. Along with their
popularity and these key features, these environments are being
responsible for attracting new contributors to open-source
projects hosted on them. In this paper, we studied whether this
belief holds true for the analyzed projects. Among the results
of our study, we found that although some projects increased
interaction after migrating to GitHub, the rise of contributions
is not guaranteed. For future work, we plan to further expand
the scope of this study with additional subjects.

REFERENCES

[1] R. Pham, L. Singer, O. Liskin, F. Figueira Filho, and K. Schneider,
“Creating a shared understanding of testing culture on a social coding
site,” in ICSE, 2013, pp. 112–121.

[2] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of the
pull-based software development model,” in ICSE, 2014, pp. 345–355.

[3] G. Pinto, I. Steinmacher, and M. Gerosa, “More common than you think:
An in-depth study of casual contributors,” in SANER, 2016, pp. 112–123.

[4] G. Gousios and A. Bacchelli, “Work practices and challenges in pull-
based development: The contributor’s perspective,” in ICSE, 2016, pp.
358–368.

[5] N. McDonald and S. Goggins, “Performance and participation in open
source software on github,” in CHI, 2013, pp. 139–144.

[6] I. Moura, G. Pinto, F. Ebert, and F. Castor, “Mining energy-aware
commits,” in MSR, May 2015, pp. 56–67.

[7] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study of
programming languages and code quality in github,” in FSE, 2014, pp.
155–165.

[8] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical
factors for evaluating contribution in github,” in ICSE, 2014, pp. 356–
366.

[9] J. Marlow, L. Dabbish, and J. Herbsleb, “Impression formation in online
peer production: Activity traces and personal profiles in github,” in
CSCW, 2013, pp. 117–128.

[10] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
github: Transparency and collaboration in an open software repository,”
in CSCW. New York, NY, USA: ACM, 2012, pp. 1277–1286.

[11] M. Zhou and A. Mockus, “Who will stay in the floss community? mod-
elling participant’s initial behaviour,” IEEE Transactions on Software
Engineering, vol. 41, no. 1, pp. 82–99, 2015.

[12] N. Ducheneaut, “Socialization in an open source software community:
A socio-technical analysis,” CSCW, vol. 14, no. 4, pp. 323–368, Aug.
2005.

[13] C. Bird, “Sociotechnical coordination and collaboration in open source
software,” in ICSM. Washington, DC, USA: IEEE Computer Society,
2011, pp. 568–573.

[14] D. Wilks, Statistical Methods in the Atmospheric Sciences, ser.
Academic Press. Academic Press, 2011. [Online]. Available: https:
//books.google.com.br/books?id=IJuCVtQ0ySIC

[15] R. Grissom and J. Kim, Effect Sizes for Research: Univariate and
Multivariate Applications. Taylor & Francis, 2005.

[16] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Should we
really be using t-test and cohen’s d for evaluating group differences
on the nsse and other surveys?” in Annual meeting of the Florida
Association of Institutional Research, 2006.

[17] B. Kitchenham and S. Pfleeger, “Personal opinion surveys,” in Guide
to Advanced Empirical Software Engineering, F. Shull, J. Singer, and
D. Sjberg, Eds. Springer London, 2008, pp. 63–92.

[18] A. Strauss and J. M. Corbin, Basics of Qualitative Research : Techniques
and Procedures for Developing Grounded Theory, 3rd ed. SAGE
Publications, 2007.

https://books.google.com.br/books?id=IJuCVtQ0ySIC
https://books.google.com.br/books?id=IJuCVtQ0ySIC

	Introduction
	Related Work
	Research Methodology
	Research Question
	Subjects
	Research Approach
	Mining Subjects
	Surveying Subjects

	Research Results
	Contributors and Contributions
	Pull-Requests
	Issues

	Discussions
	Conclusions
	References

